1 Poincaré duality

If \(M \) is a compact manifold, oriented of dimension \(m \), we can integrate an \(m \)-form in \(M \), and by the stokes' theorem, if the integral of an exact form is equal to zero, then the linear map \(\omega \in \Omega^m(M) \mapsto \int_M \omega \in \mathbb{R} \) induces a linear map

\[
D_M : H^k(M) \to (H^{m-k})^*, \quad D_M[\omega] : [\eta] \mapsto \int_M \omega \wedge \eta
\]

The Poincaré's duality theorem shows that this map is an isomorphism. The proof we will use proves a more general result, for orientable manifolds which are not compact.

If \(\omega \in \Omega^k(M) \) and \(\eta \in \Omega^{m-k}(M) \) are two chains, then \(\omega \wedge \eta \) has compact support and, by the stokes theorem, it follows that

\[
\int_M (\omega + d\theta) \wedge (\eta \wedge d\rho) = \int_M \omega \wedge \eta
\]

and thus, one could define a linear map between \(H^k(M) \) and the dual \((H^{m-k}(M))^*\) of \(H^{m-k}(M)\),

\[
D_M : H^k(M) \to (H^{m-k}(M))^*
\]

Lemma 1.1 (five lemma) Let \(f_j : M_j \to M_{j+1}, f'_j : M'_j \to M'_{j+1}, \phi_j : M_j \to M'_j \) be homomorphisms between modulos such that the following diagram commutes and the two horizontal sequences are exact.

\[
\begin{array}{ccccccc}
M_1 & \xrightarrow{f_1} & M_2 & \xrightarrow{f_2} & M_3 & \xrightarrow{f_3} & M_4 & \xrightarrow{f_4} & M_5 \\
\phi_1 & \downarrow & \phi_2 & \downarrow & \phi_3 & \downarrow & \phi_4 & \downarrow & \phi_5 \\
M'_1 & \xrightarrow{f'_1} & M'_2 & \xrightarrow{f'_2} & M'_3 & \xrightarrow{f'_3} & M'_4 & \xrightarrow{f'_4} & M'_5 \\
\end{array}
\]

If \(\phi_1, \phi_2, \phi_4, \phi_5 \) are isomorphisms then \(\phi_3 \) is also an isomorphism.

Proof. We will show that \(\phi_3 \) is surjective. Let \(y_3 \in M'_3 \), as \(\phi_4 \) is an isomorphism, there exists \(x_4 \in M_4 \) such that \(f'_4(y_3) = \phi_4(x_4) \), by the commutative of the diagram, we have \(\phi_5 f_4(x_4) = f'_4 \phi_4(x_4) \).

As the bottom sequence is exact, we have that \(f'_4 \phi_4(x_4) = f'_4 f'_3(y_3) = 0 \). Thus \(\phi_5 f_4(x_4) = 0 \) and therefore \(f_4(x_4) = 0 \) since \(\phi_5 \) is isomorphism. As the upper sequence is exact, there exists some \(x_3 \) such that \(f_3(x_3) = x_4 \). Then by the commutative of the diagram for another time, we have that \(f'_3 \phi_3(x_3) = \phi_4(x_4) = f'_4(y_3) \). Then we have \(f'_3(\phi_3(x_3) - y_3) = 0 \) and, as the bottom sequence is exact, it follows that there exists \(y_2 \in M'_2 \) such that \(f'_2(y_2) = \phi_3(x_3) - y_3 \).

As \(\phi_2 \) is surjective, there is \(x_2 \in M_2 \) such that \(\phi_2(x_2) = y_2 \). Then \(\phi_4 f_2(x_2) = f'_4 \phi_2(x_2) = \phi_3(x_3) - y_3 \). Therefore, \(x_3 - f_2(x_2) \in M_3 \) and \(\phi_3(x_3 - f_2(x_2)) = y_3 \), which proves that \(\phi_3 \) is surjective. In the same manner we have prove that \(\phi_3 \) is injective.

Let \(M = U \cup V \) where \(U \) and \(V \) are open sets. A form \(\omega \) with support in \(U \) or in \(V \) or in \(U \cap V \) can extends to a form \(\omega^M \) with the same support. Note also that the extension also preserve the property of having compact support. It then follows that the following maps

\[
\alpha : \Omega^k_c(U \cap V) \to \Omega^k_c(U) \oplus \Omega^k_c(V), \omega \mapsto (\omega^M |_U, \omega^M |_V),
\]
β : Ω^k_c(U) ⊕ Ω^k_c(V) → Ω^k_c(M), (ω_1, ω_2) → ω_1^M - ω_2^M

lead to the short exact sequence:

0 → Ω^k_c(U ∩ V) → Ω^k_c(U) ⊕ Ω^k_c(V) → Ω^k_c(M) → 0

this sequence induces the long exact sequence of cohomology group, called the Meyer-Vietoris sequence of cohomology of compact support,

⋯ → H^k_c(U ∩ V) → H^k_c(U) ⊕ H^k_c(V) → H^k_c(M) → H^{k+1}_c(U ∩ V) → ⋯

and, taking their dual, it follows an exact sequence:

⋯ → (H^k_c(U ∩ V))^* → (H^k_c(U) ⊕ H^k_c(V))^* → (H^k_c(M))^* → (H^{k+1}_c(U ∩ V))^* → ⋯

Lemma 1.2 The following diagram is commutative and the vertical sequences are exact.

\[
\begin{array}{ccc}
H^{r-1}(U) \oplus H^{r-1}(V) & \xrightarrow{D_U \oplus D_V} & H^{m-r+1}(U)^* \oplus H^{m-r+1}(V)^* \\
\beta \downarrow & & \downarrow \alpha^* \\
H^{r-1}(U \cap V) & \xrightarrow{D_{U \cap V}} & H^{m-r+1}(U \cap V)^* \\
\alpha \downarrow & & \downarrow \delta^* \\
H^r(M) & \xrightarrow{D_M} & H^{m-r}(M)^* \\
\beta \downarrow & & \downarrow \beta^* \\
H^r(U \oplus H^r(V) & \xrightarrow{D_U \oplus D_V} & H^{m-r}(U \cap V)^* \\
\end{array}
\]

Proof. The proof is trivial, thought one needs to notice that the “−” appears in the first horizontal map because of the definition of β, which sends (ω_1, ω_2) to ω|_{U \cap V} - ω|_{U \cap V}. The (−1)^{r−1} in the second vertical map is due to the identity dω ∧ η = (−1)^{r−1}ω ∧ dη if ω is a r-form.

Lemma 1.3 If B is a base of open sets of M such that if U, V ∈ B then U ∩ V ∈ B and D_U is an isomorphism for each U ∈ B then D_M is an isomorphism.

Proof. Let F be the family of finite unions of the elements from the base B. By the previous lemma and the five lemma, it follows that D_W is an isomorphism if W is a union of two elements U_1 and U_2 of B by hypothesis U_1 ∩ U_2 also belongs to B. By induction, we conclude that D_W is an isomorphism for all elements of F.

We claim that if M = ∪_{i=1}^∞ M_i where these M_i’s are pairwise disjoint open subsets, and each D_{M_i} is an isomorphism, then \(D_M \) is an isomorphism. In fact, as the sets are pairwise disjoint, it follows that \(H^r(M) = \prod_i H^r(M_i) \) and \(H^r_c(M) = \oplus_i H^r_c(M) \). Thus,

\[
(H^r_c(M))^* = \prod_i H^r_c(M)^*
\]

and

\[
D_M([\omega_i]) = (D_M([\omega_i]))_i
\]

which proves the statement. To conclude the proof of the lemma, it suffices to write M as a countable union of open sets V_i such that each V_i belongs to F and \(V_i \cap V_{i+j} = \emptyset \) if \(j \geq 2 \) and take \(U = \cup_i V_{2i} \) and \(V = \cup_i V_{2i+1} \). This can be done by standard procedure of defining M = \(\cup_i K_i \) as the countable union of compact sets, one being contained in the interior of another. Then take V_i as the finite cover of the compact set \(K_i \setminus \text{Int}(K_{i-1}) \) using elements of the base B which is also required to be contained in \(\text{Int}(K_{i+1}) \setminus K_{i-2} \).
Lemma 1.4 If M is diffeomorphic to \mathbb{R}^m then D_M is an isomorphism.

Proof. If $0 < r \leq m$ then $H^r(M) = 0$ and $H^{m-r}(M) = 0$. Let $f : \mathbb{R}^m \to \mathbb{R}$ be a C^∞ function with compact support whose integral equals 1. Then the constant function 1 can be regarded as a representative of an element in $H^0(M)$, while $f(x)dx$ is a representative of an element of $H^m_c(M)$. As $D_M(1)(f(x)dx^1 \wedge \cdots \wedge dx^m) = \int f(x_1, \cdots, x_n)dx_1 \cdots dx_n = 1$, it follows that 1 is a generator of $H^0(M)$ and the form $f dx$ is a generator of $H^m_c(M)$, thus D_M is an isomorphism.

Lemma 1.5 If $M \subset \mathbb{R}^m$ is an open subset, then D_M is an isomorphism.

Proof. Let B be the collection of the rectangles $I_1 \times \cdots \times I_m \subset M$ where $I_j \subset \mathbb{R}$ are integers. Then the intersection of two elements of B belongs to B and D_B is isomorphism because all the $B \in B$ is diffeomorphic to \mathbb{R}^m.

The Poincaré’s duality theorem follows from the previous lemmas.

2 The de Rham theorem

We will prove the de Rham theorem, which establishes the isomorphism between the de Rham cohomology group and the singular cohomology of a manifold. The proof is similar with that of the Poincaré duality theorem.

Consider the subcomplex C^{∞}_r of the chain complex $C_r(M)$ consisting of all the chains $c = \sum_i a_i \sigma_i$ where each $\sigma + i : \Delta_k \to M$ is of class C^∞ in the sense that it has a C^∞ extension to a neighborhood of Δ_k in \mathbb{R}^{k+1}. Since if $c \in C^{\infty}_k(M)$, then $\partial c \in C^{\infty}_{k-1}(M)$ it follows that the corresponding homology group is $H^{\infty}_k(M)$. Using the barycentric subdivision and the prism operator of the previous notes, one can prove the following:

Lemma 2.1 The inclusion $C^{\infty}_k(M) \hookrightarrow C_k(M)$ induces isomorphisms of the homology groups.

If $c = \sum_i a_i \sigma_i \in C^{\infty}_k(M)$ and $\omega \in \Omega_k(M)$, then define

$$\int_c \omega = \sum_i a_i \int_{\Delta_k} \sigma_i^* \omega.$$

Observe that as the simplex Δ_k is orientable, not necessarily consistent with the orientation of M. We will show the following version of the stokes theorem which applies to chains in manifolds, regardless of the orientability of compactness.

Theorem 2.2 (the stokes theorem on chains)

$$\int_{\partial c} \omega = \int_c d\omega$$

Proof. by linearity, it suffices to prove

$$\int_{\Delta_k} d\omega = \int_{\partial \Delta_k} \omega$$

Take one point x_0 in the interior of the simplex Δ_k and let S be a sphere with center x_0 in the affine subspace E of dimension k which contains the simplex Δ_k. The ray from the origin x_0 passing
through one point \(x \in S \) meets the boundary of a simplex in one unique point \(f_0(x) \). Then the function \(f_0 \) is a homeomorphism of \(S \) and the boundary of \(\Delta_k \). Let \(\rho : S \to \mathbb{R} \) be a positive function such that \(f_0(x) = x_0 + \rho(x)(x-x_0) \). If \(\Delta_i \) is the \(i \)-th face of the simplex \(\Delta_k \) and \(S_i = f_0^{-1}(\Delta_i) \) then the restriction of \(\rho \) on \(S_i \) extends to a \(C^\infty \) map \(\rho_i \), from a neighborhood of \(S_i \) in \(S \), \(x \to x_0 + \rho_i(x)(x-x_0) \) belongs to the affine subspace which contains \(\Delta_i \).

We now claim that there exists a constant \(C > 0 \), such that for any \(\delta > 0 \) there exists a function \(\phi_i^\delta : S \to [0, 1] \) of class \(C^\infty \) such that

1. \(\phi_i^\delta(x) = 1 \) if \(x \in S_i \);
2. \(\phi_i(x) = 0 \) if the distance of \(x \) and \(S_i \) is greater than \(10\sqrt{k+1}\delta \);
3. The norm of the derivative of \(\phi_i^\delta \) at any point is smaller than or equal to \(C/\delta \).

We now proceed to show how this claim can help us to prove the theorem. Consider the \(C^\infty \) map

\[
\rho_S = \sum_i \psi_i^\delta(x) \rho_i(x)
\]

where

\[
\psi_i^\delta(x) = \frac{\phi_i^\delta(x)}{\sum_j \phi_j^\delta(x)}
\]

By the chain rule, there exists a constant \(C' \), independent with \(\delta \) such that the norm of the derivative of each function \(\phi_i^\delta \) is bounded by \(C'/\delta \).

There exists a constant \(C'' > 0 \), independent of \(\delta \), such that the norm of the derivative of \(\rho_S \) at each point is bounded by \(C'' \). In fact, in a neighborhood of one point of \(S_i \) we can write

\[
\rho_S(x) = \rho_i(x) + \sum_{j \neq i} \psi_j^\delta(x)(\rho_j(x) - \rho_i(x))
\]

If \(D\psi_j^\delta(x) \neq 0 \) then the distance of \(x \) to \(S_j \) is smaller than \(5\sqrt{k+1}\delta \), and therefore, \(|\rho_j(x) - \rho_i(x)| \) is smaller than a constant times \(\delta \) because \(\rho_j - \rho_i \) is Lipschitz and vanishes in \(S_i \cap S_j \). So the derivative of \(\rho_S \) at point \(x \) is bounded by a constant independent of \(\delta \).

Let \(W_\delta \) be the manifold with boundary consisting of points of the form \(x_0 + t(x-x_0) \) with \(x \in S \) and \(0 \leq t \leq \rho_0(x) \). Let \(S_i(\delta) \) be the subset of the points of \(S_i \) whose distance to each \(S_j, j \neq i \) is greater than \(5\sqrt{k+1}\delta \). Then the restriction of \(\rho_i \) on \(S_i(\delta) \) coincides with the restriction of \(\rho \) on \(f_0(S_i(\delta)) \subset \Delta_i \). Let \(f_\delta(x) = x_0 + \rho_\delta(x)(x-x_0) \), then \(f_\delta \) is a diffeomorphism between \(S \) and \(\partial W_\delta \) and its restriction on \(S_i(\delta) \) coincides with the restriction of \(f_0 \). Moreover, the derivative of \(f_\delta \) at each point is bounded by a constant independent of \(\delta \). Thus the integral of \(\omega \) in \(f_0(S_i(\delta)) \) is equal to the integral of \(f_\delta^*\omega \) in \(S_i(\delta) \) and, as the derivative of \(f_\delta \) is bounded and the area of \(S_i(\delta) \) tends to zero when \(\delta \to 0 \), then the integral of \(f_\delta^*\omega \) in \(S_i(\delta) \) tends to zero when \(\delta \to 0 \) as is the integral of \(\omega \) in \(\partial W_\delta \cup S_i(\delta) \). Thus the integral of \(\omega \) in the boundary of \(W_\delta \) converges to the integral of \(\omega \) in the boundary of \(\Delta_k \). On the other hand, as \(\rho_\delta \) converges uniformly to \(\rho \) as \(\delta \to 0 \) it follows that the integral of \(d\omega \) converges to the integral of \(\omega \) in \(\Delta_k \), which completes the proof.

We now prove the claim. Let \(\mathbb{Z}^{k+1} \subset \mathbb{R}^{k+1} \) be the set of points with integer coordinates. Then the open balls with centers at points in \(\mathbb{Z}^{k+1} \) at radius \(2\sqrt{k+1} \) cover \(\mathbb{R}^{k+1} \), moreover there exists a constant \(N_k \) such that for each ball with center in \(\mathbb{Z}^{k+1} \) and radius \(4\sqrt{k+1} \), the number of points in \(\mathbb{Z}^{k+1} \) that are centers of balls of radius \(4\sqrt{k+1} \) that intersect the initial ball is smaller or equal to \(N_k \). Take the image of these balls under the linear map \(x \in \mathbb{R}^{k+1} \to \delta x \) it follows that the same properties for the balls \(B_\delta^{j,\lambda} = B(\lambda, 2j\delta\sqrt{k+1}), \lambda \in \delta\mathbb{Z}^{k+1} \) and \(j = 1, 2 \).

Let \(\phi : \mathbb{R}^{k+1} \to [0, 1] \) be a \(C^\infty \) function which vanishes out of the ball with center origin and radius 2 and equals 1 at points in the ball of radius 1. Composing \(\phi \) with the affine diffeomorphism which takes the ball \(B_\lambda^{j,\lambda} \) to the ball with radius 1 and with center in the origin, we obtain a \(C^\infty \) map.
\(\phi_\lambda\) which vanishes out of \(B^{3i}_\lambda\) equals to 1 in \(B^{3i}_\lambda\), and whose derivative at each point is bounded by a constant times the inverse of \(\delta\) and this constant does not depend on \(\delta\) or \(\lambda\). Consider the partition of unity \(\psi_\lambda = \sum \phi_\lambda\). By the chain rule, there exists a constant, independent with \(\delta\) and depends only on the previous constants and \(N_{k+1}\) such that the derivative of \(\psi_\lambda\) is bounded by this constant times the inverse of \(\delta\). For each \(i\) let \(U_i\) be the set of points whose distance to \(S_i\) is smaller than \(10\delta\sqrt{k+1}\). Then define the function \(\phi^i_\lambda(x) = \sum \phi_\lambda(x)\) for each \(\lambda\) such that \(B^{3i}_\lambda \subset U_i\). As all the balls \(B^{3i}_\lambda\) that intersect \(S_i\) is contained in \(U_i\) it follows that \(\phi^i_\lambda(x) = 1\) for \(x \in S_i\) and, as in the neighborhood of each point the number of portions is bounded by \(N_k\) it follows that the derivative of \(\phi^i_\lambda\) ar each point is bounded by the product of a constant with the inverse of \(\delta\), which proves the claim.

Now consider the singular complex cochains, \(\delta : C^q_\infty(M) \to C^{q+1}_\infty(M)\), where \(C^q_\infty(M)\) is the dual of \(C^q(M)\) and \(\delta\) is the dual of the boundary operator \(\partial\), i.e., \(\delta(c^q)(c_r) = c^{q}(\partial c_q)\) for all \(c^q \in C^q_\infty\) and \(c_r \in C^r_\infty\). Let \(d_M : \Omega^q(M) \to C^q_\infty(M)\) be defined by \(d_M(\omega) : c \in \Omega^q(M) \mapsto \int c \omega\). By the stokes theorem it follows that \(d_M \circ \delta = \delta \circ d_M\) and, therefore, define an homomorphism

\[d_M : H^r_{dR}(M) \to H^q_\infty(M)\]

Lemma 2.3 Let \(M = U \cup V\), where \(U\) and \(V\) are open sets. Consider the following diagram where the two vertical sequences are Meyer-Vietoris sequences and the horizontal homomorphisms are de Rham homomorphism.

\[
\begin{array}{ccc}
H^{r-1}_{dR}(U) \oplus H^r(V) & \xrightarrow{\partial U \oplus \partial V} & H^{m-r+1}_\infty(U) \oplus H^{m-r+1}_\infty(V) \\
\beta \downarrow & & \downarrow \alpha^* \\
H^{r-1}_{dR}(U \cap V) & \xrightarrow{\partial U \cap V} & H^{m-r+1}_\infty(U \cap V) \\
(-1)^r \delta \downarrow & & \downarrow \delta^* \\
H^r_{dR}(M) & \xrightarrow{\partial M} & H^m_\infty(M) \\
\alpha \downarrow & & \downarrow \beta^* \\
H^r_{dR}(U) \oplus H^r(V) & \xrightarrow{\partial U \oplus \partial V} & H^{m-r}_\infty(U \cap V) \\
\beta \downarrow & & \downarrow \alpha^* \\
H^r_{dR}(U \cap V) & \xrightarrow{\partial U \cap V} & H^{m-r}_\infty(U \cap V) \\
\end{array}
\]

Then the diagram commutes.

Theorem 2.4 (the de Rham theorem) The homomorphism \(d_M : H^k_{dR}(M) \to H^k_\infty(M)\) defined by integration of the forms in chains is an isomorphism for each manifold \(M\).