1 Transversality theorems

Definition 1.1 A differentiable map $f : M \to N$ is transversal to a submanifold $S \subset N$ if for any $x \in M$ we have that either $f(x) \notin S$ or $Df_x(TM_x) + TS_{f(x)} = TN_{f(x)}$. If $S_1 \subset N$ is another submanifold, we say that S_1 is transversal to S and write $S_1 \cap S$ if the inclusion $i : S_1 \to N$ is transversal to S i.e., for any $y \in S_1 \cap S, T(S_1)_y + TS_y = TN_y$.

Proposition 1.2 If f is a C^r map, $r \geq 1$, which is transversal to S. Then $f^{-1}(S)$ is either empty or a submanifold of M of the same codimension of S. In particular, if
\[
\text{cod}(S) = \dim N - \dim S > \dim M
\]
then $f^{-1}(S)$ is empty.

Proof. (sketch) First show that when S is a submanifold of N and let $f : M \to N$ be a differentiable map, and suppose that at each point $p \in f^{-1}(S)$, Df_p is surjective, i.e., the map f at point p is submersion. Under these conditions, we claim that $f^{-1}(S)$ is a submanifold of M, whose codimension is the same with the codimension of S in N.

Then, suppose that $f^{-1}(S)$ is not empty, it suffices to prove that Df_p is surjective for each $p \in f^{-1}(S)$. This is equivalent with the definition of the transversality.

Lemma 1.3 If $f \in C^r(M, N)$ is transversal to S and S is a closed submanifold of class C^∞ of N then for any $x \in M$ there exists $\varepsilon_x > 0$ and a neighborhood $V_x \subset M$ such that if $g \in C^r(M, N)$ and $d(j^1g(y), j^1f(y)) < \varepsilon_x$ for any $y \in V_x$ then the restriction of g on V_x is transversal to S.

Proof. Omitted.

Theorem 1.4 If S is a closed submanifold, then the set of transformations $f : M \to N$ of class $C^r, r \geq 1$ which are transversal to S is open in $C^r(M, N)$.

Proof. It follows from the above lemma.

Remark The conclusion of false if without the conditions that S is closed. An example to show this is as follows. In $\mathbb{R}^3 \supset S = \{(x, y, z); x = y = 0, z \in (0, 1)\}$, let $f : \mathbb{R} \to \mathbb{R}^3, x \mapsto (0, 0, x)$. So $f \cap S$ since $f^{-1}(S)$ is empty. But in any neighborhood of f there is some g such that $g^{-1}(S) \neq \emptyset$. But g can not be transversal to S because $\dim(\mathbb{R}) + \dim(S) < \dim(\mathbb{R}^3)$.

Lemma 1.5 If $F : M \times P \to N$ is a C^∞ map and $S \subset N$ is a submanifold. For each $y \in P$ let $F_y : M \to N$ be a map $F_y(x) = F(x, y)$. Suppose F is transversal to S, if y is a regular value of the restriction of the projection $\pi_2 : M \times P \to P$ on $F^{-1}(S)$, then F_y is transversal to S.

Proof. Let $x \in M$ such that $F_y(x) \in S$. As y is a regular value, if follows that there exists a subspace $E_1 \subset T(F^{-1}(S))_{(x, y)}$ such that the restriction of $(D\pi_2)_{(x, y)}$ on E_1 is an isomorphism. If
follows that $T(F^{-1}(S))_{(x,y)} = E_1 \oplus E_2$ where E_2 is a subspace contained in the kernel of $(DF_x)_{(x,y)}$. Let E_3 be the complement subspace of E_2 in the the kernel of $(DF_x)_{(x,y)}$. Since the derivative $DF_{(x,y)}$ maps $E_1 \oplus E_2$ to the tangent space of N at point $f(x,y)$, namely, $TN_{F(x,y)}$, and since F is transversal, so the image of E_3 is a subspace $E_4 \subset TN_{F(x,y)}$ such that $TN_{F(x,y)} = TS_{F(x,y)} \oplus E_4$.

Now, we have $DF_y(TM_x) = DF_{(x,y)}(E_2 \oplus E_3) \supset DF_{(x,y)} = E_4 = TN_{F(x,y)} \oplus TS_{F(x,y)}$, it follows that F_y is transversal at x.

Lemma 1.6 If $F : M \to N$ is of class C^∞ then the set of regular values of F is a residual subset of N.

Proof. Let $\phi_i : W_i \subset M \to B(0,3), \psi_i : V_i \subset N \to \mathbb{R}^n$ be atlas such that $F(W_i) \subset V_i$ and $\cup_i^{-1}(B(0,1)) = M$. Let K_i be the closure of $\phi_i^{-1}(B(0,1))$ and $C(f) = \{x \in MDf_x$ is not surjective}. Then

$$f(C(f) \cap K_i) \subset \psi_i^{-1}(\psi_i \circ f \circ \phi_i^{-1})(C(\psi_i \circ f \circ \phi_i^{-1}))$$

is a closed set with empty interior, because, by sard’s theorem, $((\psi_i \circ f \circ \phi_i^{-1}))$ is countable union of closed subsets with empty interior. Thus the complement of is is residual.

Theorem 1.7 If $F : M \times P \to N$ is a C^∞ transformation which is transversal to a submanifold $S \subset N$, then the set of points $y \in P$ such that F_y is transversal to S is residual.

Proof. This is the immediate consequence of the previous two lemmas.

Corollary 1.8 Let $f : U \subset \mathbb{R}^m \to \mathbb{R}^n$ be of class C^∞, $K \subset U$ is a compact set and $S \subset \mathbb{R}^n$ is a C^∞ submanifold. Given $\epsilon > 0$ there exists a C^∞ function $g : U \to \mathbb{R}^n$ such that

1. $g = f$ out of a compact neighborhood of K contained in U.
2. $\|g - f\| < \epsilon$ in U.
3. g is transversal to S at points of K.

Proof. Let $\lambda : \mathbb{R}^m \to [0,1]$ such that $\lambda(x) = 1$ for $x \in K$. By theorem, the set of $v \in \mathbb{R}^n$ such that the map $x \in U \to f(x) + v$ is transversal to S is residual and therefore dense. If $v \in \mathbb{R}^n$ belongs to this set and its norm is small enough then the map g defined by $g(x) = f(x) + \lambda(x)v$ satisfies the three conditions.

Corollary 1.9 Let $f : U \subset \mathbb{R}^m \to \mathbb{R}^n$ be of class C^∞, $K \subset U$ is a compact set. Let $S \subset J^1(U, \mathbb{R}^n) = U \times \mathbb{R}^m \times L(\mathbb{R}^m, \mathbb{R}^n)$ is a C^∞ submanifold. Then given $\epsilon > 0$ there exists a C^∞ function $g : U \to \mathbb{R}^n$ such that

1. $g = f$ out of a compact neighborhood of K contained in U.
2. $\|g - f\|_{C^r} < \epsilon$ in U.
3. j^1g is transversal to S at points of K.

Proof. By theorem, the set $(v, A) \in \mathbb{R}^n \times L(\mathbb{R}^m, \mathbb{R}^n)$ such that if $g_{v,A}(x) = f(x) + v + A(x)$, then $j^1g_{v,A}$ is transversal to S, is a residual set. Let $\lambda : \mathbb{R}^m \to [0,1]$ as the previous proof. Then take (v, A) as above with small enough norm, then $g(x) = f(x) + \lambda(x)(v + A(x))$ satisfies the conditions.

Theorem 1.10 Let $S \subset N$ be a C^∞ submanifold. $F \subset S$ is a closed set. Then define $\cap_F = \{f \in C^r(M, N) | \text{either } f(x) \notin F \text{ or } f \cap_x S\}$. \cap_F is open and dense.
Proof. The openness has already been proved in theorem 1.4. As the C^∞ transformations are dense it suffices to prove that each neighborhood \mathcal{V}' of a C^∞ transformation f contains a transformation which is either transversal to S or does not intersect N. Let

$$\varphi_i U_i \subset M \rightarrow \widetilde{U}_i \subset \mathbb{R}^m$$

$$\varphi_i V_i \subset M \rightarrow \widetilde{V}_i \subset \mathbb{R}^n$$

be local charts such that $f(U_i) \subset V_i$, $\{U_i\}$ are locally finite, K_i is compact set contained in U_i and $\cup_i K_i = M$. Let $\epsilon_i > 0$ small enough such that the neighborhood $\mathcal{V}'(f)$ consisting of functions g such that $g(K_i) \subset V_i$ and $\|\psi_i \circ g \circ \varphi_i^{-1} - \psi_i \circ f \circ \varphi_i^{-1}\|_{C^r} < \epsilon_i$ at $\varphi_i(K_i)$ is contained in \mathcal{V}.

Define $A_i = \{g \in \mathcal{V}'(f), g$ is transversal to S at $\varphi_i^{-1}(K_i)\}$ then by the corollary, A_i is open and dense. Since the space $C^r(M,N)$ is Baire space, $\cap_i A_i$ is residual and thus dense in $\mathcal{V}'(f)$.

Corollary 1.11. $S \subset N$ is a closed submanifold, then $\{f \in C^r(M,N) | f \cap S\}$ is open and dense.

Corollary 1.12. $S \subset N$ is a submanifold, then $\{f \in C^r(M,N) | f \cap S\}$ is residual.

Example. Let $R_i \subset \mathbb{R}^3$ be line segments such that $\cup_i R_i$ is dense in \mathbb{R}^3. If $f : \mathbb{R} \rightarrow \mathbb{R}^3$ is any C^1 class curve, then there exists some curve g which can be arbitrarily close to f, such that $g(\mathbb{R}) \cap R_i = \emptyset$ for all i.

Theorem 1.13 Let $S \subset J^k(M,N)$ is a submanifold of class C^∞, not necessarily closed. Suppose $k \leq r - 1$ and consider the set $\{f \in C^r(M,N) | j^k f \cap S\}$. Then this set is residual (in particular, dense) and open if S is closed.

Proof. Omitted.

Corollary 1.14 The set $Im^r(M,N) \subset C^r(M,N)$ with $r \geq 1$ is open and dense if $dim(N) \geq 2dim(M)$

Proof. The openness was already proved previously, it suffices to show the density of the immersions in $C^{r+1}(M,N)$. Let $P_k \subset J^1(M,N)$ be the set of points $(x,y,T) \in J^1(M,N)$, where $x \in M, y \in N$ and $T : TM_x \rightarrow TN_y$ is a linear map of rank k. Then P_k is a submanifold of codimension $(m - k) \times (n - k)$ which is true if $n \geq 2m$ and $k < m$. By the previous theorem, the set of maps in $C^{r+1}(M,N)$ such that $j^1 f$ is transversal to each P_k is residual (note that P_k is not closed submanifold because it intersects P_{k-1}). Thus, if f belongs this residual set, then $j^1 f(M) \cap P_k = \emptyset$ for $k < m$. Then f is an immersion.

One application of this corollary is that, if $n = 1$, then in the space $C^r(M,\mathbb{R})$, the set $\{x \in M ; Df_x = 0\}$ is isolated, since it is a submanifold with codimension m.

Let $\mathcal{X}^r(M) \subset C^r(M, TM)$ be the vector space of vector fields. We say that $x \in M$ is a singularity of $X \in \mathcal{X}^r(M)$ if $X(x) = 0$. If $X : U \subset \mathbb{R}^m \rightarrow \mathbb{R}^m$ is a C^r vector field, $r \geq 1$, a singularity $x \in X$ is a simple singularity if DX_x has rank n, i.e., is an isomorphism.

Lemma 1.15 Let $r \geq 1$, $X : U \subset \mathbb{R}^m \rightarrow \mathbb{R}^m$ is a vector field of class C^r. Let $K \subset U$ be a compact set. Given $\epsilon > 0$ there exists a C^r vector field $Y : U \rightarrow \mathbb{R}^m$ such that

1. $Y = X$ out of some compact neighborhood of K which is contained in U.
2. $\|Y - X\|_{C^r} < \epsilon$ in U.
3. The singularities of Y at K are simple, i.e., DY_x is an isomorphism if $x \in K$ and $Y(x) = 0$.

3
Proof. Omitted.

Theorem 1.16 Let \(\text{Im}(M, N) \subset C^r(M, N), r \geq 1 \) be the set of immersions, which is open and dense. Let

\[
\Delta_M = \{(x, y) \in M \times M | x = y\}
\]

\[
\Delta_N = \{(x, y) \in N \times N | x = y\}
\]

for each \(f \in \text{Im}(M, N) \) consider the map \(F_f : M \times M \setminus \Delta_M \to M \times N \), given by \(F_f(x, y) = (f(x), f(y)) \). The set of functions \(f \in \text{Im}(M, N) \) such that \(F_f \) is transversal to \(\Delta_N \) is residual and is also open if \(M \) is compact.

Proof. Since \(F_f : M \times M \setminus \Delta_M \) can be viewed as a manifold, and \(\Delta_N \) is a submanifold of \(N \times N \), one gets that the set of functions in a neighborhood of \(F_f \) in \(C^r(M \times M \setminus \Delta_M, N \times N) \) which is transversal to \(\Delta_N \) is residual. This implies that the set of \(f \in C^r(M, N) \) such that \(F_f \) is in this residual set is residual in \(C^r(M, N) \). If \(M \) is compact, we have that this set is open, too, by the Thom transversality theorem.

Corollary 1.17 If \(\dim N \geq 2 \dim M + 1 \) then the set of bijective immersions from \(M \) to \(N \) is residual and is also open if \(M \) is compact.

Proof. From previous results, we have that the set \(\text{Im}(M, N) \) is open in \(C^r(M, N) \). Then it suffices to prove that the set of 1–1 maps is dense in \(C^r(M, N) \). In the settings of the above theorem, this is equivalent with the requirement that \(F_f \) is transversal to \(\Delta_N \). In fact, since their dimensions satisfy \(\dim N \geq 2 \dim M + 1 \), the only way that \(F_f \) could be transversal to \(\Delta_N \) is that \(F_f(M \times M \setminus \Delta_M) \cap \Delta_N = \emptyset \), which is equivalent to \(f \) is bijective.

Corollary 1.18 (Whitney embedding) There exists an embedding of \(M \) to \(\mathbb{R}^{2m+1} \) where \(m = \dim M \).

Proof. As we have seen above, the set of proper maps is open and is not empty. Therefore they intersect the set of bijective immersions, which is dense. A proper bijective immersion is an embedding.