Definition 1. (Pullback of fiber bundles) Let $\pi : E \to M$ be a fiber bundle with respect to the cocycle $\delta_{ij} : U_i \cap U_j \to G$ and the action $\rho : G \to Diff^\infty(F)$. Let $f : N \to M$ be a C^∞ transformation. Then $\{V_i = f^{-1}(U_i)\}$ is an open cover of N and $\Phi_{ij} : V_i \cap V_j \to G$ defined by $\Phi_{ij} = \delta_{ij} \circ f$ is a cocycle on N. The fiber on N with respect to this cocycle and the same action ρ is denoted by $\pi^* : f^*(E) \to N$.

Then there exists a differentiable transformation $\hat{f} : f^*(E) \to E$ such that the diagram commute(omitted): $\pi \circ \hat{f} = f \circ \pi^*$, and the transformation \hat{f} when restricted on each fiber of $F^*(E)$ is a diffeomorphism between onto the corresponding fiber of E. If $\pi : E \to M$ is a vector bundle then \hat{f} is a linear isomorphism on each fiber.

Definition 2. (An Example of Universal bundles) Let the base manifold be the Grassmannian $G(k, n) = \{k\text{-planes in } \mathbb{R}^n\}$. Define the fiber bundle as $U(k, n) = \{(E, x) | E \in G(k, n), x \in E\}$. We can also make this a fiber bundle with structure group $GL(\mathbb{R}^k)$. Note also $U(k, n)$ can be regarded as a subspace of $G(k, n) \times \mathbb{R}^k$, since for each fixed $E \in G(k, n)$, E is a k-subspace in \mathbb{R}^n.

Using the definition of pull back, if $f : M \to G(k, n)$ where M is a manifold, then we have that $f^*(U(k, n))$ has fiber \mathbb{R}^k and the fiber bundle $\pi' : f^*(U(k, n)) \to M$. Then, if we fix the dimension of M as k, then letting $(n-k)k > 2k + 1$, we can embed M into the space $G(k, n)$, then we have the following theorem,

Theorem 0.1 Any vector bundle on M is isomorphic to $f^*(U(k, n))$ for some n.

Note that a vector bundle is just a fiber bundle where each bundle is a (real) vector space.

1 Tensor Fields

Let $V \subset \mathbb{R}^n$ be an open set. A k-form in V is a C^∞ map $\Phi : V \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ defined by $(x, (v_1, \cdots, v_k)) \mapsto \Phi(x; v_1, \cdots, v_k)$ which is linear in each of the variables v_j. If $U \subset \mathbb{R}^p$ is an open set and $\varphi : U \to V$ is a C^∞ map, define the pullback of Φ under φ, such that

$$(\varphi^*\Phi)(x; v_1, \cdots, v_k) = \Phi(\varphi(x); (D\varphi_x)v_1, \cdots, (D\varphi_x)v_k)$$

We say that Φ is alternating if $\Phi(x; v_{\sigma(1)}, \cdots, v_{\sigma(k)}) = \text{sign}(\sigma)\Phi(x; v_1, \cdots, v_k)$ and symmetric if $\Phi(x; v_{\sigma(1)}, \cdots, v_{\sigma(k)}) = \Phi(x; v_1, \cdots, v_k)$ for any permutations σ of the set $\{1, \cdots, k\}$. Clearly, $\varphi^*\Phi$ is symmetric (respectively, alternating) if Φ is symmetric (respectively, alternating).

A alternating k-forms is called a differential k-forms. A symmetric positive definite k-form is called a Riemannian metric. Note that if φ is an immersion then the pullback of a Riemannian metric is also a Riemannian metric.

Note that the pull-back of a k-form does not require φ to be diffeomorphism. We can also have $p \neq n$. On the other hand, the pull-back of vector field could be defined only when φ is a diffeomorphism.

Denote by $(\mathbb{R}^n)^*$ the dual space of \mathbb{R}^n, i.e., the space of linear transformations of $\mathbb{R}^n \to \mathbb{R}$. Then, as a special case of the above k-forms, a vector field X in $V \subset \mathbb{R}^n$ defines a C^∞ function
\(T : V \times (\mathbb{R}^n)^* \to \mathbb{R} \), which is linear in the second variable, by \(T(x; \ell) = \ell(X(x)) \). Conversely, given any \(\Phi : V \times \mathbb{R}^n \to \mathbb{R} \), it can be viewed as a \(C^\infty \) vector field on \(V \) since for each \(x \in V \), the function \(\Phi(x, \cdot) \) is a linear functional from \(\mathbb{R}^n \) to \(\mathbb{R} \), which is an isomorphism between \(\mathbb{R}^n \) and itself.

A tensor bundle of type \((k, p)\) in an open set \(V \subset \mathbb{R}^n \) is a transformation

\[
T : V \times (\mathbb{R}^n)^* \times \cdots \times (\mathbb{R}^n)^* \times \mathbb{R}^n \cdots \times \mathbb{R}^n \to \mathbb{R}
\]

defined by \(T(x; \ell_1, \cdots, \ell_k, v_1, \cdots, v_p) \in \mathbb{R} \) which is linear in each of the variables \(\ell_i \in (\mathbb{R}^n)^* \) and \(v_j \in \mathbb{R}^n \).

The above vector field is a tensor field of type \((1, 0)\); while a \(k\)-form is a tensor field of type \((0, k)\).

Pullback of tensor fields Let \(\varphi : U \subset \mathbb{R}^n \to V \subset \mathbb{R}^n \) be a diffeomorphism, then, the pullback of the tensor field \(T \) of type \((k, p)\) in \(V \) under \(\varphi \) is the tensor field \(\varphi^* T \) in \(U \), defined by

\[
(\varphi^* V)(x; \ell_1, \cdots, \ell_k, v_1, \cdots, v_p) = T(\varphi(x); \ell_1 \circ (D\varphi)^{-1}_x, \cdots, \ell_k \circ (D\varphi)^{-1}_x, v_1, \cdots, v_p)
\]

The map \(\varphi^* \) is a linear transformation and we have that

\[
(f \circ g)^* = (g^* \circ f^*)
\]

The set of tensor fields of type \((k, p)\) in an open set \(V \subset \mathbb{R} \) is a vector space \(T^k_p(V) \) and the transformation \(\varphi^* : T^k_p(U) \to T^k_p(V) \) is an isomorphism whose inverse is \((\varphi^{-1})^*\).

Definition 1.1 (tensor fields on manifolds) Let \(\{ \varphi_i : U_i \to \tilde{U}_i \subset \mathbb{R}^n, i \in I \} \) be an atlas in a manifold \(M \). A tensor field of type \((k, p)\) in \(M \) is a family \(T_i \) as tensor fields of type \((k, p)\) in \(\tilde{U}_i \), which is invariant under the change of coordinates,

\[
(\varphi_j \circ \varphi_i^{-1})^* (T_j|\varphi_j(U_i \cap U_j)) = T_i|\varphi_i(U_i \cap U_j)
\]

Remark. A \(C^\infty \) function \(f : M \to \mathbb{R} \) corresponds to a family of \(C^\infty \) functions \(f_i : \tilde{U}_i \to \mathbb{R} \) which are compatible under the change of coordinates:

\[
f_j \circ (\varphi_j \circ \varphi_i^{-1}) = f_i
\]

The derivatives of order \(p \) of each \(f_i \) is a symmetric \(p\)-form \(D^p f_i \) in each \(U_i \). But if \(p > 1 \) they can not define a tensor field of type \((0, p)\) in \(M \). This shows that we can not define derivatives of order greater than \(1 \) between manifolds.

Let \(T(k, p) \) be the vector space of the multilinear function in \((\mathbb{R}^n)^* \times \cdots \times (\mathbb{R}^n)^* \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n \). Consider the action \(GL(\mathbb{R}^n) \to GL(T(k, p)) \) defined by \(\rho(A)(T) = A^* T \), where

\[
A^* T(\ell_1, \cdots, \ell_k, v_1, \cdots, v_p) = T(\ell_1 \circ A^{-1}, \cdots, \ell_k \circ A^{-1}, Av_1, \cdots, Av_p)
\]

Then \(\rho \) is a representation of \(GL(\mathbb{R}^n) \) and therefore, together with the cocycle in \(M \) defined by the changes of coordinates, we can define a vector bundle \(T^k_p(M) \to M \) whose sections are the tensor fields of type \((k, p)\) in \(M \).

Now we focus on the special orthogonal group \(SO(m) \), consisting of all the orthogonal matrix with determinant \(1 \). First recall the definition of a orientable manifold. We say a manifold \(M \) is orientable if and only if there exists an atlas \(\varphi_i : U_i \to \tilde{U}_i \subset \mathbb{R}^m \) such that for any \(x \in U_i \cap U_j \) we have \(\det(D(\varphi_j \circ \varphi_i^{-1})(x)) > 0 \), and \(\langle , \rangle_x \) is a Riemannian metric in \(M \).

Let the vector fields \(X^1_i : U_i \to TM, j = 1, \cdots, n \) be defined such that \((D\varphi_i)_x(X^j_i(x)) = \frac{\partial}{\partial x^j} \) for any \(x \in U_i \), and thus \(X^1_i(x), \cdots, X^m_i(x) \) is a positive base of \(TM_x \). Using the Gram-Schmidt process, we can change these basis into orthonormal fields, namely, \(\{ Y^1_i, \cdots, Y^m_i \} \).
Define the map \(\gamma_{ij} : U_i \cap U_j \to SO(m) \) as \(\gamma_{ij}(x)(Y^i_1, \ldots, Y^i_m) = (Y^j_1, \ldots, Y^j_m) \) and this is a cocycle. With respect to this cocycle, we can consider the fiber bundle over a manifold \(M \) with fiber \(\mathbb{R}^m \), and then there exists tensor bundle such that at each fiber it is an inner product.

Example. (direct sum and tensor product). Let \(\pi_j : E_j \to M \) be vector bundles with respect to the cocycle \(\delta_{ij} : U_i \cap U_j \to G \) and the representation \(\rho_i : G \to GL(V_i) \) where \(V_i \) are vector spaces. Then, \(\rho_1 \oplus \rho_2 : G \to GL(V_1 \oplus V_2) \), \(\rho_1 \otimes \rho_2 : G \to GL(V_1 \otimes V_2) \) defined by

\[
(\rho_1 \oplus \rho_2)(g)(x \oplus y) = \rho_1(g)(x) \oplus \rho_2(g)(y)
\]

and

\[
(\rho_1 \otimes \rho_2)(g)(x \otimes y) = \rho_1(g)(x) \otimes \rho_2(g)(y)
\]

are representations of \(G \) and the corresponding vector bundles are denoted by \(E_1 \oplus E_2 \) and \(E_1 \otimes E_2 \).

The fibers at each point \(x \in M \) are isomorphic to \(\pi_1^{-1}(x) \oplus \pi_2^{-1}(x) \) and \(\pi_1^{-1}(x) \otimes \pi_2^{-1}(x) \).

2 The Jet Bundles

As we have already seen in the remark after definition 1.1, one can not define derivatives of order greater than 1 for functions between manifolds. On the other hand, however, we claim the following:

Property. Let \(f_i : U_i \to V_i, i = 1, 2 \) be two transformations of class \(C^k \) between open sets of Euclidean spaces and \(\varphi : U_1 \to U_2, \psi : V_1 \to V_2 \) be two \(C^k \) diffeomorphisms. Then, \(f_1 \) and \(f_2 \) have the same derivatives until order \(k \) at \(x \in U_1 \) if and only if \(\psi \circ f_1 \circ \varphi^{-1} \) and \(\psi \circ f_2 \circ \varphi^{-1} \) have the same derivatives until order \(k \). We use the convention that the 0 derivative is the function itself.

The proof of this property is left as exercise.

Let \(M \) and \(N \) be \(C^\infty \) manifolds and \(C^k(M, N) \) is the space of \(C^k \) maps between \(M \) and \(N \). If \(p \in M \) we define the following relation in \(C^k(M, N) \):

\[
f_1 \sim_p^k f_2 \text{ if and only if } f_1(p) = f_2(p) = q \text{ and } \psi \circ f_1 \circ \varphi^{-1} \text{ have the same derivatives until order } k \text{ at } \varphi(p) \text{ if } \psi \text{ and } \varphi \text{ are local charts around } q \text{ and } p.
\]

From the property above we know \(\sim_p^k \) is indeed an equivalence relation and each equivalence class of \(f \) is called the \(k \)-jet of \(f \) at \(p \) and is denoted as \(j^k f(p) \). The set

\[
J^k(M, N) = \{ j^k f(p); f \in C^k(M, N) \text{ and } p \in M \}
\]

is called the space of \(k \)-jets.

We also have the projection \(\pi : J^k(M, N) \to M \times N \), which associates for each \(k \)-jet \(j^k f(p) \) the pair \((p, q)\) where \(q = f(p) \) for some representative \(f \) in the equivalence class \(j^k f(p) \).

A \(C^r \) transformation \(f : M \to N \) with \(r \geq k \) induces a transformation \(j^k f : M \to J^k(M, N) \) which makes the diagram commute (diagram omitted): \(\pi_2 \circ \pi \circ j^k f = f \). Below we will show that \(\pi : J^k(M, N) \to M \times N \) has a structure of \(C^\infty \) bundle and that the function \(j^k f \) is of class \(C^{r-k} \).

For this, we will construct a cocycle in \(M \times N \) and an action of this cocycle on a manifold.

A natural candidate for the fiber is the space \(J^k(m, n) \) of \(k \)-jets of the \(C^k \) functions in \(\mathbb{R}^m \) to \(\mathbb{R}^n \) which takes \(0 \) to \(0 \).

We have a natural isomorphism

\[
J^k(m, n) \sim L([\mathbb{R}^m; \mathbb{R}^n]) \times L^2_s([\mathbb{R}^m; \mathbb{R}^n]) \times \cdots \times L^k_s([\mathbb{R}^m; \mathbb{R}^n])
\]
Let \(G^k(m) \subset J^k(m,m) \) be the open subset
\[
G^k(m) \sim GL(\mathbb{R}^m) \times L^2_+(\mathbb{R}^m;\mathbb{R}^n) \times \cdots \times L^k_+(\mathbb{R}^m;\mathbb{R}^n)
\]
It is clear that \(G^k(m) \) has a structure of Lie group defined by the Taylor’s polynomial of the composition of two Taylor’s polynomials, i.e., \(j^k f(0) \ast j^k g(0) = j^k (f \circ g(0)) \), where \(\ast \) is the product of the Lie group. So if \(g \in G^k(m) \), \(g \) is associated with the Taylor’s polynomial \(\varphi : \mathbb{R}^m \to \mathbb{R}^n \) which is an isomorphism locally at 0. The Taylor’s polynomial of the local inverse \(\varphi \) of class \(C \) is a fiber bundle with fiber \(J \) of the Lie group. So if \(g \), \(j \) is the composition of two Taylor’s polynomials, i.e.,
\[
\rho(g,h)(j^k f(0)) = j^k (h \circ f \circ g^{-1})(0).
\]
In order to get the structure of the bundle, it suffices to construct a cocycle of \(G^k(m) \times G^k(n) \) on \(J^k(m,n) \), as follows, given \(g \in G^k(m) \) and \(h \in G^k(n) \) and \(j^k f(0) \in J^k(m,n) \),
\[
\rho(g,h)(j^k f(0)) = j^k (h \circ f \circ g^{-1})(0).
\]
We leave it as an exercise to verify the cocycle’s condition. It follows that
\[
\gamma_{ij}^1(z) = \text{the taylor’s polynomial of the function } \hat{\alpha}_{ij} \circ \hat{\alpha}_{ij}^{-1}
\]
\[
\gamma_{ij}^2(z) = \text{the taylor’s polynomial of the function } \hat{\beta}_{ij} \circ \hat{\beta}_{ij}^{-1}
\]
We leave it as an exercise to verify the cocycle’s condition. It follows that \(\pi : J^k(M,N) \to M \times N \) is a fiber bundle with fiber \(J^k(m,n) \) and structure group \(G^k(m) \times G^k(n) \). The function \(j^k f \) is then of class \(C^{r-k} \) because in their coordinates, \(\hat{f} : U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n \) is the expression of \(f \) in the trivialization of \(J^k(M,N) \) in \(\pi^{-1}(U \times V) \). The expression of \(j^k f \) is
\[
x \to (x, \hat{f}(x), D\hat{f}(x), D^2\hat{f}(x), \cdots , D^n\hat{f}(x))
\]
which is of class \(C^{r-k} \).