1 Fiber Bundles

Definition 1.1 Tangent bundles of a manifold M, denoted by TM, is defined by

\[TM = \{ (x,v) \in M \times TM_x \} \]

Let $\pi : TM \to M$ be the projection $\pi(x,v) = x$. We want to define a topology and a manifold structure in TM such that π is a C^∞ submersion if M is a C^∞ manifold. Consider an atlas $\{(\varphi_i : U_i \subset M \to \mathbb{R}^m, i \in I)\}$ in M and define the functions

\[\Phi_i : \pi^{-1}(U_i) \subset TM \to U_i \times \mathbb{R}^m \]

by

\[\Phi_i(x,v) = (x,(D_x\varphi_i)v) \]

Clearly Φ_i is a bijection and $\Phi_j \circ \Phi_i^{-1} : (U_i \cap U_j) \times \mathbb{R}^m \to (U_i \cap U_j) \times \mathbb{R}^m$ is the diffeomorphism $(x,v) \to (x,D(\varphi_j \circ \varphi_i^{-1})(\varphi_i(x))v)$. Then, when M is a C^∞ differential manifold of dimension m, TM is a C^∞ differential manifold of dimension $2m$. The projection π is a C^∞ submersion, with $\pi^{-1}(p) = TM_p$. The set $\{U_i, \Phi_i\}$ is called a local trivialization of the fiber bundle.

Exercise 1. A C^r vector field in M is a C^r map $X : M \to TM$ such that $\pi \circ X = Id_M$.

Since Φ_i are diffeomorphisms, define $\tilde{\Phi}_i : \pi^{-1}(U_i) \to \tilde{U}_i \times \mathbb{R}^m$ by $\tilde{\Phi}_i(x,v) = (\varphi_i(x),(D_x\varphi_i)(v))$. Then this is a C^k atlas on TM. Define $\gamma_{ij} : U_i \cap U_j \to GL(\mathbb{R}^m)$ as the C^∞ transformations $\gamma_{ij}(x) = (D(\varphi_j \circ \varphi_i^{-1})\varphi_i(x))$. By the chain rule, we have that, if $x \in U_i \cap U_j \cap U_k$ then

\[\gamma_{ik}(x) = \gamma_{jk}(x) \cdot \gamma_{ij}(x), \]

where $\gamma_{jk}(x) \cdot \gamma_{ij}(x)$ is the composition of two linear transformations. The change of the local trivializations $\Phi_j \circ \Phi_i^{-1} : (U_i \cap U_j) \times \mathbb{R}^m \to (U_i \cap U_j) \times \mathbb{R}^m$ is written as

\[\Phi_j \circ \Phi_i^{-1}(x,v) = (x,\gamma_{ij}(x)v) \]

where γ_{ij} satisfies the above conditions.

Definition 1.2 Let $\{U_i\}$ be an open cover of a manifold M. Let G be a Lie group. A family of C^∞ functions $\delta_{ij} : U_i \cap U_j \to G$ satisfying the condition $\delta_{ik}(x) = \delta_{jk}(x)\delta_{ij}(x)$ for any $x \in U_i \cap U_j \cap U_k$ is called a cocycle of M taking values in the group G.

Recall that an action of the Lie group G on a manifold F is an homeomorphism $\rho : G \to Diff^\infty(F)$ such that the map $G \times F \to F$ defined by $(g,x) \mapsto \rho(g)(x)$ is of class C^∞. If F is a vector space, then $\rho(g)$ is an linear isomorphism for all $g \in G$. It is called a representation of the group G.

Definition 1.3 A fiber bundle with total space \(E \), base \(M \), fiber \(F \), projection \(\pi : E \to M \) and structure group \(G \), is a submersion \(\pi : E \to M \) to a \(C^\infty \) manifold \(M \), a \(C^\infty \) action \(\rho : G \to \text{Diff}(F) \) of the Lie group \(G \) on the fiber \(F \) and a cocycle \(\delta_{ij} : U_i \cap U_j \to G \) such that for each \(U_i \) there exists a diffeomorphism \(\Phi_i : \pi^{-1}(U_i) \to U_i \times F \) such that \(\pi \circ \Phi_i = \pi \), where \(\pi : U_i \times F \to U_i \) is the canonical projection to the first coordinate; and such that \(\Phi_j \circ \Phi_i^{-1} : (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F \) is such that \(\Phi_j \circ \Phi_i^{-1}(x, y) = (x, \rho_{ij}(x)(y)) \), where \(\rho_{ij} = \rho \circ \delta_{ij} \).

The functions \(\rho_{ij} \) are called the transition functions. If \(\rho \) is a representation of \(G \) then each fiber \(\pi^{-1}(x) \) has a vector space structure such that the restriction of \(\Phi_i \) on \(\pi^{-1}(x) \) is an isomorphism between \(\pi^{-1}(x) \) and \(F \). We say that \(\pi \) is a vector fiber bundle. An example is the tangent bundle of \(M \).

Theorem 1.4 Given any cocycle \(\delta_{ij} : U_i \cap U_j \to G \) on a manifold \(M \). Let \(\rho \) be a \(C^\infty \) action. Then there exists a fiber bundle \(\pi : E \to M \) with fiber \(F \) and group structure \(G \), the transition function being \(\rho_{ij} = \rho \circ \delta_{ij} \).

Proof. Let \(\hat{E} \) be a disjoint union \(\bigsqcup_i (U_i \times F) \) and \(\hat{\pi} : \hat{E} \to M \) is the relation defined by

\[
(x, v) \sim (y, w) \iff \begin{cases} x = y, & \text{and} \\ w = \delta_{ij}(x)v, & \text{if } x \in U_i \cap U_j. \end{cases}
\]

Using the definition of cocycles, it can be verified the above is an equivalence relation. Let \(E \) be the set of equivalence classes and \(q : \hat{E} \to E \) be the quotient map. Equip \(E \) with the quotient topology we have that there exists a unique continuous map \(\pi : E \to M \) such that \(\hat{\pi} = \pi \circ q \). For each \(i \), the map \(\Phi_i : U_i \times F \to \pi^{-1}(U_i) \subset E \) defined by the composition the inclusion \(i : U_i \times F \hookrightarrow \hat{E} \) and the projection map \(q \) is a homeomorphism. By the definition of equivalence relation it follows that the homeomorphism

\[
\Phi_j \circ \Phi_i^{-1} : (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F
\]

is given by

\[
(x, v) \mapsto (x, \delta_{ij}(x)(v))
\]

Thus there exists a unique manifold structure in \(E \) satisfying the conditions of the theorem.

Definition 1.5 A \(C^r \) section of a fiber bundle \(\pi : E \to M \) is a \(C^r \) map \(X : M \to E \) such that \(\pi \circ X = \text{Id}_M \).

Proposition. Let \(\pi : E \to M \) be a fiber bundle with group structure \(G \) and fiber \(F \), cocycle \(\delta_{ij} : U_i \cap U_j \to G \) and the action \(\rho : G \to \text{Diff}(F) \). We can identify a section \(X \) of \(\pi \) with a family \(X_i : U_i \to F \) of \(C^k \) functions satisfying the compatibility condition of as follows:

\[
x \in U_i \cap U_j \Rightarrow X_j(x) = \rho_{ij}X_i(x)
\]

Example 0. Let \(\delta_{ij} : U_i \cap U_j \to GL(\mathbb{R}^m) \) be defined for an atlas in \(M \). Let \(\rho : GL(\mathbb{R}^m) \to \text{Diff}(\mathbb{R}^m) \) given by \(\rho(A)(x) = Ax \). Then, the resulting fiber bundle is the tangent bundle of \(M \) and the \(C^k \) sections are the vector fields in \(M \).

Example 1. Observe the action \(GL(\mathbb{R}^m) \times (\mathbb{R}^m)^* \to (\mathbb{R}^m)^* : (A, \lambda) \mapsto \lambda \circ A^{-1} \). Similarly, let \(A \in GL(\mathbb{R}^m) \), and let \(L^k(\mathbb{R}^m, \mathbb{R}) \) be the space of all the \(k \)-linear transformations, which is a vector space. Define \(A^* : L^k(\mathbb{R}^m, \mathbb{R}) \to L^k(\mathbb{R}^m, \mathbb{R}) \) by \((A^* L)(v_1, \ldots, v_k) = L(A^{-1}v_1, \ldots, A^{-1}v_k) \). Then we have \((A \circ B)^* = B^* A^* \). Let \(\rho : GL(\mathbb{R}^m) \times L^k(\mathbb{R}^m, \mathbb{R}) \to L^k(\mathbb{R}^m, \mathbb{R}) \) be defined as \(\rho(A, L) = A^* L \). Any section of this fiber bundle is actually a \(k \)-differential form in \(M \).
A special case is when \(k = 2 \). We use \(S_2(TM) \rightarrow M \) to denote this vector bundle, where each \(\pi^{-1}(x) \approx S_2(\mathbb{R}^m) \) is the space of all the symmetric bilinear maps \(TM_x \times TM_x \rightarrow \mathbb{R} \). Note that the space of all the positive definite bilinear transformations, denoted by \(C_+(\mathbb{R}^m) \), is a cone (i.e., for any \(\lambda \in \mathbb{R}^+ \) and any \(L \in S_2(\mathbb{R}^m) \)) in the vector space of all the symmetric bilinear transformation. So we have that the set \(C_+(TM) \) is an open subset of \(S_2(TM) \). A \(C^\infty \) section of \(S_2(TM) \) which takes values in \(C_+(TM) \) is a Riemannian metric on \(M \).

A simpler case is when \(k = 1 \). \(L(\mathbb{R}^m, \mathbb{R}) = (\mathbb{R}^m)^* \), while the corresponding bundle is the cotangent bundle.

If in the fiber bundle, the fiber is the Lie group \(G \), and the action is \(G \) at the same time. We still have several different interesting structures. For example, \(\varphi_1 : G \times G \rightarrow G, \varphi(g, h) = g \cdot h \); while \(\varphi_2 : G \times G \rightarrow G, \varphi(g, h) = g \cdot h \cdot g^{-1} \) can define different bundles.

Definition 1.6 Let \(\delta_{ij} : U_i \cap U_j \rightarrow G \) be a cocycle in a manifold \(M \). The fiber bundle in \(M \) with respect to the action \(\rho : G \rightarrow Diff(G) \) given by \(\rho(g)(h) = gh \) is called a principal bundle.

Definition 1.7 A right action of a group \(G \) on a manifold \(E \) is an anti-homomorphism \(\gamma : G \rightarrow Diff(E) \) such that \(\gamma(g_1, g_2) = \gamma(g_2)\gamma(g_1) \) and that the map \(E \times G \rightarrow E : (x, g) \rightarrow \gamma(g)(x) \) is \(C^\infty \).

Theorem 1.8 A locally trivial fiber bundle \(\pi : E \rightarrow M \) is a principal bundle with respect to some cocycle \(\delta_{ij} : U_i \cap U_j \rightarrow G \), then there exists a right action of \(G \) on \(E \), \(E \times G \rightarrow E \) which preserves the fibers and acts transitively and has no fixed points at each fiber.

Proof. Let \(\pi : E \rightarrow M \) be a principal bundle with respect to the cocycle \(\delta_{ij} \) and let \(\Phi_i : \pi^{-1}(U_i) \rightarrow U_i \times G \). Since \(\Phi_j \circ \Phi_i^{-1} : (U_i \cap U_j) \times G \) is defined by \((x, g) \rightarrow (x, \delta_{ij}(x)g) \) we have that \(\Phi_j \circ \Phi_i^{-1} \) is compatible with the right action of \(G \) on \((U_i \cap U_j) \times G \) given by \((x, g)h = (x, gh) \). Then the right action of \(G \) on \(\pi^{-1}(U_i \cap U_j) \) induced by \(\Phi_i \) coincides with the induced action from \(\Phi_j \) and, therefore, we have got a right action of \(G \) on \(E \) which satisfies the requirements of this theorem.

Example. A frame bundle on \(M \) is a principal bundle with group structure \(GL(\mathbb{R}^m) \). The fiber \(F \) associated to this bundle is the set of all the frames with respect to a finite dimensional vector space, which is homeomorphic to the space \(GL(\mathbb{R}^m) \). The right group \(GL(\mathbb{R}^m) \) action on itself is of course defined by \(\rho(A)B = BA \).